Model-Free Predictive Control of Nonlinear Processes Based on Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملcontrolling nonlinear processes, using laguerre functions based adaptive model predictive control (ampc) algorithm
laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. therefore, it is widely adopted for complex industrial process control. in this work, laguerre function based adaptive model predictive control algorithm (ampc) was implemented to control continuous stirred tank rea...
متن کاملHybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model
In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...
متن کاملLearning-based model predictive control for Markov decision processes
We propose the use of Model Predictive Control (MPC) for controlling systems described by Markov decision processes. First, we consider a straightforward MPC algorithm for Markov decision processes. Then, we propose value functions, a means to deal with issues arising in conventional MPC, e.g., computational requirements and sub-optimality of actions. We use reinforcement learning to let an MPC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2016
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2016.03.034